
The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

ORG ; FOUR
Dec Hex Bin
3 3 00000011

Arithmetic
and Logic
Instructions
And Programs

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

OBJECTIVES
this chapter enables the student to:

• Demonstrate how 8-bit and 16-bit unsigned
numbers are added in the x86.

• Convert data to any of the forms:
– ASCII,packed BCD,unpacked BCD.

• Explain the effect of unsigned arithmetic
instructions on the flags.

• Code the following Assembly language unsigned
arithmetic instructions:
– Addition instructions: ADD and ADC.
– Subtraction instructions SUB and SBB.
– Multiplication and division instructions MUL and DIV.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

OBJECTIVES
this chapter enables the student to:

• Code BCD arithmetic instructions:
– DAA and DAS.

• Code the Assembly language logic instructions:
– AND, OR, and XOR.
– Logical shift instructions SHR and SHL.
– The compare instruction CMP.

• Code bitwise rotation instructions
– ROR, ROL, RCR, and RCL.

• Demonstrate an ability to use all of the above
instructions in Assembly language programs.

• Perform bitwise manipulation using the C language.

(cont)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.0: UNSIGNED ADDITION AND SUBTRACTION

• Unsigned numbers are defined as data in which all
the bits are used to represent data.
– Applies to the ADD and SUB instructions.
– No bits are set aside for the positive or negative sign.

• Between 00 and FFH (0 to 255 decimal) for 8-bit data.
• Between 0000 and FFFFH (0 to 65535 decimal) for 16-bit data.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
addition of unsigned numbers

• The form of the ADD instruction is:

• ADD and ADC are used to add two operands.
– The destination operand can be a register or in memory.
– The source operand can be a register, in memory, or

immediate.
• Memory-to-memory operations are never allowed

in x86 Assembly language.
– The instruction could change ZF, SF, AF, CF, or PF bits of

the flag register.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 074586

Arithmetic Instructions – ADD, ADC, INC, AAA, DAA

Mnemonic Meaning Format Operation Flags
Affecte
d

ADD Addition ADD D, S (S) + (D) (D)
Carry (CF)

All

ADC Add with
carry

ADC D, S (S) + (D) + (CF) (D)
Carry (CF)

All

INC Increment by
one

INC D (D) + 1 (D) All but
CY

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 074587

Examples

Ex. 1 ADD AX, 2
ADC AX, 2

Ex. 2 INC BX
INC word ptr [BX]

25

56

+ ----------

7B 81

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
addition of unsigned numbers

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
CASE1 addition of individual byte/word data

• Program 3-1a uses AH to accumulate carries as the
operands are added to AL.

See the entire program listing on page 93 of your textbook.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
CASE1 addition of individual byte/word data

• Numbers are converted to hex by the assembler:
– 125=7DH 235=0EBH 197=0C5H 91=5BH 48=30H

• Three iterations of the loop are shown below.
– In the first, 7DH is added to AL.

• CF = 0 and AH = 00.
• CX = 04 and ZF = 0.

– Second, EBH is added to AL & since a carry occurred,
AH is incremented

• AL = 68H and CF = 1.
• CX = 03 and ZF = 0.

– Third, C5H is added to AL, again a carry increments AH.
• AL = 2DH, CX = 02 and ZF = 0.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
CASE1 addition of individual byte/word data

• This process continues until CX = 00 and the zero
flag becomes 1, causing JNZ to fall through.
– The result will be saved in the word-sized memory set

aside in the data segment.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
CASE1 addition of individual byte/word data

• Due to pipelining it is strongly recommended that
the following lines of the program be replaced:

– The "ADC AH,00" instruction in reality means add
00+AH+CF and place the result in AH.

• More efficient since the instruction "JNC OVER" has to empty
the queue of pipelined instructions and fetch the instructions
from the OVER target every time the carry is zero (CF = 0).

• Program 3-1b is the same as 3-1a, rewritten for word addition.
(See the program listing on page 94 of your textbook.)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
CASE2 addition of multiword numbers

• Assume a program to total U.S. budget for the last
100 years or mass of planets in the solar system.
– Numbers being added could be 8 bytes wide or more.

• The programmer must write the code to break the
large numbers into smaller chunks to be processed.
– A 16-bit register & an 8 byte operand is wide would

take a total of four iterations.
– An 8-bit register with the same operands would require

eight iterations.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
CASE2 addition of multiword numbers

• In writing program 3-2, the first decision was the
directive for coding the data in the data segment.

See the entire program listing on page 95 of your textbook.

DQ was chosen since it can
represent data as large as
8 bytes wide.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
CASE2 addition of multiword numbers

• In addition of multibyte (or multiword) numbers, the
ADC instruction is always used, as the carry must
be added to the next-higher byte (or word) in the
next iteration.
– Before executing ADC, the carry flag is cleared

(CF = 0) using the CLC (clear carry) instruction.
• Three pointers have been used:

– SI for DATA1; DI for DATA2.
– BX for DATA3. (where the result is saved)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
CASE2 addition of multiword numbers

• A new instruction, "LOOP XXXX", replaces the often
used "DEC CX" and "JNZ XXXX".

– When "LOOP xxxx" is executed, CX decrements
automatically, and if CX is not 0, the processor will
jump to target address xxxx.

• If CX is 0, the next instruction (below "LOOP xxxx") is
executed.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
subtraction of unsigned numbers

• In subtraction, x86 processors use 2's complement.
– Internal adder circuitry performs the subtraction command.

• x86 steps in executing the SUB instruction:
– 1. Take the 2's complement of the subtrahend.

(source operand)
– 2. Add it to the minuend. (destination operand)
– 3. Invert the carry.

• The steps are performed for every SUB instruction
regardless of source & destination of the operands.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
subtraction of unsigned numbers

• After the execution, if CF = 0, the result is positive.
– If CF = 1, the result is negative and the destination

has the 2's complement of the result.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
subtraction of unsigned numbers

• NOT performs the 1's complement of the operand.
– The operand is incremented to get the 2's complement.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
SBB subtract with borrow

• SBB is used for multibyte (multiword) numbers.
– It will take care of the borrow of the lower operand.

• If the carry flag is 0, SBB works like SUB.
• If the carry flag is 1, SBB subtracts 1 from the result.

• The PTR (pointer) data specifier directive is widely
used to specify the size of the operand when it
differs from the defined size.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
SBB - subtract with borrow
• "WORD PTR" tells the assembler to use a word

operand, though the data is defined as a doubleword.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
multiplication of unsigned numbers

• In multiplying two numbers in the x86 processor,
use of registers AX, AL, AH, and DX is necessary.
– The function assumes the use of those registers.

• Three multiplication cases:
– byte times byte; word times word; byte times word.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
multiplication of unsigned numbers

• byte × byte - one of the operands must be in the
AL register and the second can be in a register or
in memory.
– After the multiplication, the result is in AX.

– 25H is multiplied by 65H and the result is saved in
word-sized memory named RESULT.

• Register addressing mode was used.
• Examples of other address modes appear on textbook page 98.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
multiplication of unsigned numbers

• word × word - one operand must be in AX & the
second operand can be in a register or memory.
– After multiplication, AX & DX will contain the result.

• Since word-by-word multiplication can produce a 32-bit
result, AX will hold the lower word and DX the higher word.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
multiplication of unsigned numbers

• word × byte - similar to word-by-word
multiplication except that AL contains the byte
operand and AH must be set to zero.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
division of unsigned numbers

• Like multiplication, division of two numbers in the
x86 uses of registers AX, AL, AH, and DX.

• Four division cases:
– byte over byte; word over word.
– word over byte; doubleword over word.

• In divide, in cases where the CPU cannot perform
the division, an interrupt is activated.
– Referred to as an exception, and the PC will display a
Divide Error message.

• If the denominator is zero. (dividing any number by 00)
• If the quotient is too large for the assigned register.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
division of unsigned numbers

• byte/byte - the numerator must be in the AL register
and AH must be set to zero.
– The denominator cannot be immediate but can be in a

register or memory, supported by the addressing modes.
• After the DIV instruction is performed, the quotient is in AL

and the remainder is in AH.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
division of unsigned numbers

• Various addressing modes of the denominator.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
division of unsigned numbers

• Various addressing modes of the denominator.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
division of unsigned numbers

• Various addressing modes of the denominator.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
division of unsigned numbers

• word/word - the numerator is in AX, and DX must
be cleared.
– The denominator can be in a register or memory.

• After DIV, AX will have the quotient.
• The remainder will be in DX.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
division of unsigned numbers

• word/byte - the numerator is in AX & the
denominator can be in a register or memory.
– After DIV, AL will contain the quotient, AH the remainder.

• The maximum quotient is FFH.

• This program divides AX = 2055 by CL = 100.
– The quotient is AL = 14H (20 decimal)
– The remainder is AH = 37H (55 decimal).

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION
division of unsigned numbers

• doubleword/word - the numerator is in AX and DX.
– The most significant word in DX, least significant in AX.

• The denominator can be in a register or in memory.
– After DIV, the quotient will be in AX, the remainder in DX.

• The maximum quotient FFFFH.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745834

Example

DATA DB +13,-10,+19,+14,-18 ;0d,f6,13,0e,ee
MOV CX,5 ;LOAD COUNTER
SUB BX, BX ;CLEAR BX, USED AS ACCUMULATOR
MOV SI, OFFSET DATA ;SET UP POINTER

BACK: MOV AL,[SI] ;MOVE BYTE INTO AL
CBW ;SIGN EXTEND INTO AX
ADD BX, AX ;ADD TO BX
INC SI ;INCREMENT POINTER
DEC CX ;DECREMENT COUNTER
JNZ BACK
mov ax,bx ;LOOP IF NOT FINISHED
MOV CL,5 ;MOVE COUNT TO AL
DIV CL ;FIND THE AVERAGE

• Write a program that calculates the average of five temperatures and writes the result in AX

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
AND
• AND destination, source

– This instruction will perform a logical
AND on the operands and place the
result in the destination.

• Destination operand can be a register
or in memory.

• Source operand can be a register,
memory, or immediate.

• AND will automatically change the CF & OF to zero.
– PF, ZF, and SF are set according to the result.

• The rest of the flags are either undecided or unaffected.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
AND

• AND can mask certain bits of the operand, and also
to test for a zero operand:

This code will AND DH with itself
and set ZF = 1 if the result is zero.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
OR
• OR destination, source

– Destination/source operands are
Ored, result placed in the destination.

• Can set certain bits of an operand to 1.
• Destination operand can be a register

or in memory.
• Source operand can be a register, in

memory, or immediate.

• Flags are set the same as for the AND instruction.
– CF & OF will be reset to zero.

• SF, ZF, and PF will be set according to the result.
• All other flags are not affected.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
OR

• The OR instruction can also be used to test for a
zero operand.
– "OR BL,0" will OR the register BL with 0 and

make ZF = 1 if BL is zero.
– "OR BL,BL" will achieve the same result.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
XOR
• XOR dest, src

– XOR will eXclusive-OR operands
and place result in the destination.

• Sets the result bits to 1 if they are
not equal, otherwise, reset to 0.

• Flags are set the same as for AND.
• Operand rules are the same as in

the AND and OR instructions.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
XOR

• XOR can be used to see if two registers have the
same value.
– "XOR BX,CX" will make ZF = 1 if both registers have the

same value, and if they do, the result (0000) is saved in
BX, the destination.

• A widely used application of XOR is to toggle bits of
an operand.

– Toggling bit 2 of register AL would cause it to change
to the opposite value; all other bits remain unchanged.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
XOR

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
SHIFT

• Shifts the contents of a register or memory location
right or left.
– There are two kinds of shifts:

• Logical - for unsigned operands.
• Arithmetic - for signed operands.

• The number of times (or bits) the operand is shifted
can be specified directly if it is once only.
– Through the CL register if it is more than once.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745843

Shift

C

C

Target register or memory

C

C

0

0

0

Sign Bit

SHL

SAL

SHR

SAR

equivalent

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

• SHR - logical shift right.
– Operand is shifted right bit by bit.

• For every shift the LSB (least significant bit)
will go to the carry flag. (CF)

• The MSB (most significant bit) is filled with 0.

3.3: LOGIC INSTRUCTIONS
SHIFT RIGHT

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

• If the operand is to be shifted once only, this is
specified in the SHR instruction itself.

3.3: LOGIC INSTRUCTIONS
SHIFT RIGHT

– After the shift, BX = 7FFFH and CF = 1. SHIFT.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

• The operand to be shifted can be in a register or in
memory.
– Immediate addressing mode is not allowed for SHIFT.

• "SHR 25,CL" will cause the assembler to give an error.

3.3: LOGIC INSTRUCTIONS
SHIFT RIGHT

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

• SHL - Logical shift left, the reverse of SHR.
– After every shift, the LSB is filled with 0.

• MSB goes to CF.
– All rules are the same as for SHR.

3.3: LOGIC INSTRUCTIONS
SHIFT LEFT

3-11 can also
be coded as:

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745848

Examples

; Multiply AX by 10
SHL AX, 1
MOV BX, AX

MOV CL,2
SHL AX,CL
ADD AX, BX

Ex.

Examples SHL AX,1
SAL DATA1, CL ; shift count is a modulo-32 count

Ex. What are the results of SAR CL, 1 if CL initially contains B6H?

Ex. What are the results of SHL AL, CL if AL contains 75H
and CL contains 3?

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS

• ROR, ROL and RCR, RCL are designed specifically
to perform a bitwise rotation of an operand.
– They allow a program to rotate an operand right or left.

• Similar to shift instructions, if the number of times
an operand is to be rotated is more than 1, this is
indicated by CL.
– The operand can be in a register or memory.

• There are two types of rotations.
– Simple rotation of the bits of the operand
– Rotation through the carry.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745850

Rotate

C

C

Target register or memory

C

C

RCL

ROL

RCR

ROR

Ex.

What is the result of ROL byte ptr [SI], 1 if this memory location 3C020
contains 41H?

What is the result of ROL word ptr [SI], 8 if this memory location 3C020
contains 4125H?

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS
ROR/ROL rotate right/rotate left

• In ROR (Rotate Right), as bits are shifted from left
to right, they exit from the right end (LSB) and enter
the left end (MSB).
– As each bit exits LSB, a copy is given to the carry flag.

• In ROR the LSB is moved to the MSB, & copied to CF.

• In ROL (Rotate Left), as bits are shifted from right
to left, they exit the left end (MSB) and enter the
right end (LSB).
– Every bit that leaves the MSB is copied to the carry flag.

• In ROL the MSB is moved to the LSB and is also copied to CF

Programs 3-7 & 3-8 on page 120 show applications of rotation instructions

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS
ROR rotate right

– If the operand is to be rotated once, the 1 is coded.
• If it is to be rotated more than once, register CL is used

to hold the number of times it is to be rotated.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS
ROL rotate left

– If the operand is to be rotated once, the 1 is coded.
• If it is to be rotated more than once, register CL is used

to hold the number of times it is to be rotated.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS
RCR/RCL right/left through carry

• In RCR, as bits are shifted from left to right, they
exit the right end (LSB) to the carry flag, and the
carry flag enters the left end (MSB).
– The LSB is moved to CF and CF is moved to the MSB.

• CF acts as if it is part of the operand.

• In RCL, as bits are shifted from right to left they exit
the left end (MSB) and enter the carry flag, and the
carry flag enters the right end (LSB).
– The MSB is moved to CF and CF is moved to the LSB.

• CF acts as if it is part of the operand.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS
RCR right through carry

– If the operand is to be rotated once, the 1 is coded.CF=1
• If more than once, register CL holds the number of rotations.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

– If the operand is to be rotated once, the 1 is coded.
• If more than once, register CL holds the number of rotations.

3.5: ROTATE INSTRUCTIONS
RCL left through carry

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745857

Write a program that counts the number of 1’s in a byte and writes it
into BL

DATA1 DB 97 ; 61h
SUB BL,BL ;clear BL to keep the number of 1s
MOV DL,8 ;rotate total of 8 times
MOV AL,DATA1

AGAIN: ROL AL,1 ;rotate it once
JNC NEXT ;check for 1
INC BL ;if CF=1 then add one to count

NEXT: DEC DL ;go through this 8 times
JNZ AGAIN ;if not finished go back
NOP

Example

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
COMPARE of unsigned numbers
• CMP destination,source

– Compares two operands & changes flags according to the
result of the comparison, leaving the operand unchanged.

• Destination operand can be in a register or in memory.
• Source operand can be in a register, in memory, or immediate.

• CF, AF, SF, PF, ZF, and OF flags reflect the result.
– Only CF and ZF are used.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745859

Compare

Unsigned Comparison

Comp
Operands

CF ZF

Dest >
source

0 0

Dest =
source

0 1

Dest <
source

1 0

Signed Comparison

Comp
Operands

ZF SF,OF

Dest >
source

0 SF=OF

Dest =
source

1 x

Dest <
source

0 SF<>OF

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
COMPARE of unsigned numbers

• Compare is really a SUBtraction.
– Except that the values of the operands do not change.

• Flags are changed according to the execution of SUB.
• Operands are unaffected regardless of the result.
• Only the flags are affected.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
COMPARE of unsigned numbers

• Program 3-3 uses CMP to find the highest byte
in a series of 5 bytes defined in the data segment.

See the entire program listing on page 107 of your textbook.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
COMPARE of unsigned numbers

• Program 3-3 searches five
data items to find the highest
grade, with a variable called
"Highest" holding the highest
grade found so far.

A REPEAT-UNTIL structure was used
in the program, where grades are compared,
one by one, to Highest.
If any of them is higher, that value is placed
in Highest, continuing until all data items are
checked.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
COMPARE of unsigned numbers

• Program 3-3, coded in Assembly language, uses
register AL to hold the highest grade found so far.
– AL is given the initial value of 0.

• A loop compares each of the 5 bytes with AL.
– If AL contains a higher value, the loop continues to

check the next byte.
– If AL is smaller than the byte checked, the contents of

AL are replaced by that byte and the loop continues.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
COMPARE of unsigned numbers

• There is a relationship between the pattern of
lowercase/uppercase ASCII letters, as shown
below for A and a:

The only bit that changes is d5.
To change from lowercase to
uppercase, d5 must be masked.

A 0100 0001 41H
a 0110 0001 61H

The only bit that changes is d5.
To change from lowercase to
uppercase, d5 must be masked.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
COMPARE of unsigned numbers

• Program 3-4 uses CMP to determine if an ASCII
character is uppercase or lowercase.
– It detects if the letter is in lowercase, and if it is,

it is ANDed with 1101 1111B = DFH.
• Otherwise, it is simply left alone.

– To determine if it is a lowercase letter, it is compared
with 61H and 7AH to see if it is in the range a to z.

• Anything above or below this range should be left alone.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745866

Compare Example

DATA1 DW 235Fh
…

MOV AX, CCCCH
CMP AX, DATA1
JNC OVER
SUB AX,AX
OVER: INC DATA1

CCCC – 235F = A96D => Z=0, CF=0 =>
CCCC > DATA1

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745867

Compare (CMP)

Write a program to find the highest among 5 grades and write it in DL

DATA DB 51, 44, 99, 88, 80 ;13h,2ch,63h,58h,50h
MOV CX,5 ;set up loop counter
MOV BX, OFFSET DATA ;BX points to GRADE data

SUB AL,AL ;AL holds highest grade found so far
AGAIN: CMP AL,[BX] ;compare next grade to highest

JA NEXT ;jump if AL still highest
MOV AL,[BX] ;else AL holds new highest

NEXT: INC BX ;point to next grade
LOOP AGAIN ;continue search

MOV DL, AL

For ex: CMP CL,BL ; CL-BL; no modification on neither operands

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

ORG ; ENDS
Dec Hex Bin
3 3 00000011

